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We address the problem of estimating bound of causal
effect between pairs of variables (X ,Y) in a system, i.e.,
measuring how much one variable Y changes after another
variable X is intervened, relaxing the causal sufficiency
assumption and using only observational data.
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Motivation

Most works consider the causal sufficiency assumption,
i.e., that there are no latent variables in the system that are
common direct causes of measured variables. This is often
unrealistic in applied contexts.

On Maximal Ancestral Graphs (MAGs), used to model
insufficient systems, it is not always possible to estimate the
causal effect directly between some pairs of variables (X ,Y).
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Main Goal
Develop and validate a way to approximate the causal effect
between a pair of variables when it cannot be estimated directly
in a causal system with unmeasured common causes.

Unmeasured 
Common Cause
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Causal Graphical Model

i (G,Φ), G causal structure and Φ model parameters.

ii Φ Structural Equations (SE), Xi = fi(pa(Xi),Ui).

DAG Causal SE Lineales Gaussianas
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Markov Equivalence Class (MEC)

Partial structure P representing a MEC.

Causal discovery algorithms find these partial structures P.
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IDA Algorithm
[Maathuis et al., 2009]

They assume the system V = {X1, . . . ,Xp} is causal
sufficiency and jointly Gaussian.
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Causal Insufficiency and MAGs

i Causal Sufficiency: There are no latent variables in V that
are common direct causes of measured variables.

ii Maximal Ancestral Graphs (MAGs), m-separation.

iii A MAG represents a DAG with latent variables preserving
all the conditional independence relationships among the
measured variables.
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Algoritmo LV-IDA
[Malinsky and Spirtes, 2017]
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Post-Intervention Distribution

Covariate Adjustment

i Given a causal structure G.

ii G is used to find a subset of variables Z , called the
adjustment set.

iii Using this set Z , the post-intervention distribution is computed
as:

P(y | do(x)) =

P(y | x), if Z = ∅∫
Z P(y | xz)P(z)dz, otherwise.
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LV-IDA Limitations
There is not always an adjustment set in a MAG for some
pairs of variables.

NAs Simples

Θ = {NA ,NA , θM3 , θM4}. ¿[θmin, θmax ]?

NAs Extremos

Θ = {NA ,NA ,NA ,NA }. ¿[θmin, θmax ]?
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Problem Definition

Is there any plausible approximation for the value of the causal
effect between a pair of variables (X ,Y) when it is not possible to
find an adjustment set in an insufficient causal system
V = {X1, . . .Xp} modeled with a MAG?

Θ = {NA ,NA , θM3 , θM4}. ¿[θmin, θmax ]?

Θ = {NA ,NA ,NA ,NA }. ¿[θmin, θmax ]?
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Hypothesis
Estimating the causal effect for a pair of variables (X ,Y) by
covariate adjustment in the canonical DAG associated to a
MAG, obtaining its full parameterization by means of
Expectation Maximization (EM) techniques, can be a good
approximation for cases in which the causal effect on the pair
(X ,Y) is not identifiable in the MAG.
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DAGs canónicos
i Sea LD = {λXY | X ↔ Y inM}.

ii El DAG canónico D asociado a un MAGM tiene conjunto de
vértices V ∪ LD(M) y conjunto de aristas dado por:

Si

{
X → Y
X ↔ Y

}
enM, entonces

{
X → Y
X ← λXY → Y

}
en D.
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Causal Effects Matrices
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Causal Effects Matrices CE+
Mw
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LV-IDA+ algorithm

Data Set

Figure 1:
(d) CEMw = (θ̂ij)

Mw
p×p ⊕ CEDw = (θ̂ij)

Dw

(p+lw)×(p+lw)
= CE+

Mw
= (θ̂ij)p×p .

(e) CE∗ = ([θ̂min, θ̂max ]ij)p×p
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Matriz de Intervalos de Efectos Causales
CE∗ en LV-IDA+
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Experimental Evaluation

The LV-IDA+ algorithm was implemented in the R
programming language and the LV-IDA implementation
given in [Malinsky and Spirtes, 2017] was used.

80 synthetic causal models were generated, varying the
number of variables p ∈ {5, 8, 11, 14}, 20 different models for
each p with samples of size 1000.

For a total of 7,360 causal effect estimations, with each of
the two algorithms: LV-IDA+ and LV-IDA.
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Evaluation Metric I
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Evaluation Metric II
Let IEM = (ϵij) be the Interval Error Matrix where the ϵij are
defined as the IntMSE between the true total effect θij in
CEReal, and the estimate interval of causal effect [θ̂min, θ̂max ]ij
in CE∗.

Let Σ be the sum of all the elements ϵij of the Interval Error
Matrix IEM = (ϵij). The Average Interval Mean Square Error
(AIntMSE), is defined as:

AIntMSE =
Σ

p2 − (p + eNA)
,

where p is the number of variables and eNA is the number of
extreme NAs.

21 / 57



Results

AIntMSE SimpleNAs ExtremeNAs Time (sec)
p = 5

LV-IDA+ 0.0223 ± 0.0182 0 0 6.6 ± 2.4
LV-IDA 0.0357 ± 0.0413 28.88 ± 16.04 3.50 ± 2.27 1.4 ± 0.7
p = 8

LV-IDA+ 0.0441 ± 0.0333 0 0 14.4 ± 7.5
LV-IDA 0.0710 ± 0.0611 107.8 ± 28.32 20.3 ± 4.44 4.6 ± 1.6
p = 11
LV-IDA+ 0.1040 ± 0.1130 0 0 17.0 ± 11.1
LV-IDA 0.1797 ± 0.2133 177.3 ± 78.2 49.4 ± 26.6 16.4 ± 7.1
p = 14
LV-IDA+ 0.2353 ± 0.2028 0 0 18.4 ± 18.2
LV-IDA 0.4101 ± 0.3605 340.3 ± 98.69 74.1 ± 8.37 12.2 ± 21.6

22 / 57



Conclusions

1. Employing EM techniques can effectively solve the problem
of obtaining a full parameterization when a DAG with latent
variables is selected to approximate causal effects that
cannot be calculated directly on the MAG.

2. The canonical DAG associated with a MAG is a way of
representing the set of DAGs included in a MAG, that can be
efficiently constructed and adds few latent variables with
respect to the number of variables in the MAG.
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Conclusions

3. The experiments show better accuracy in the intervals
estimated by LV-IDA+ than those estimated by LV-IDA in the
case where the data were generated by a canonical DAG.

4. This is because the non-estimated causal effects caused by
the missing values, i.e., simple NAs, make the LV-IDA
estimates misleading.
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Future Work

1. Extend the spectrum of the type of synthetic models in
experimentation to explore the generality of our algorithm,
e.g., perform tests with simulated data from anti-canonical
DAGs.

2. Extend the experimentation for LV-IDA+ on PAGs generated
by the FCI([Zhang, 2008b]) and GFCI ([Ogarrio et al., 2016])
algorithms, with synthetic data and real Gaussian Bayesian
networks.

3. Extend the work on [Montero-Hernandez et al., 2018] to
insufficient system. In which intervals of causal effects are
used to point to a single model of the Markov equivalence
class.
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Thank you.
Any questions?
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Principio de Causa Común

El principio de causa común dice que toda correlación entre un
par de variables es debida a una una relación de causa directa
entre las variables, o debida a un tercer factor llamado causa
común.

No hay correlación sin causalidad.
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DAGs canónicos
i Sea LD = {λXY | X ↔ Y inM}.

ii El DAG canónico D asociado a un MAGM tiene conjunto de
vértices V ∪ LD(M) y conjunto de aristas dado por:

Si

{
X → Y
X ↔ Y

}
enM, entonces

{
X → Y
X ← λXY → Y

}
en D.
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Fundamento Lógico
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Sub-estructuras Complejas de Variables
Latentes
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Sub-estructuras con Causas Comunes
Compartidas
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Limitantes LV-IDA+ / Patrones
Anti-canónicos
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Objetivos I

1 Implementar una forma de calcular un DAG canónico a partir
de un MAG y obtener una completa parametrización del
mismo utilizando técnicas de maximización de expectativas
para poder estimar los efectos causales entre pares de
variables en este DAG canónico.

2 Extender el algoritmo LV-IDA ([Malinsky and Spirtes, 2017])
para estimar los lı́mites de los efectos causales dados un PAG
calculando los efectos causales sobre los DAG canónicos
asociados con los MAG en el PAG, como aproximaciones
para los casos en los que no se pueden calcular directamente
sobre los MAG.
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Objetivos II

1 Presentar un proceso de generación de datos en el que
primero se construye un PAG aleatorio, luego se selecciona
aleatoriamente un MAG dentro de la MEC representado por
este PAG, y finalmente se computa el DAG canónico asociado
a este MAG para generar los datos de acuerdo con este DAG.

2 Evaluar nuestra propuesta de aproximar los efectos causales
para los casos en los que no se pueden calcular directamente
en los MAG, comparando la calidad de las cotas estimadas
de los efectos causales con nuestra extensión al algoritmo
LV-IDA que implementa nuestra hipótesis, con el algoritmo
original LV-IDA.
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Aprendizaje de Parámetros con Variables
Ocultas

i Obtener los CPD para todas las variables no ocultas en base
a un estimador de ML.

ii Inicializar los parámetros desconocidos con valores
aleatorios.

iii Considerando los parámetros reales, estime los valores de
los nodos ocultos basados en las variables conocidas
mediante inferencia probabilı́stica.

iv Utilice los valores estimados de los nodos ocultos para
completar / actualizar el conjunto de datos.

v Vuelva a estimar los parámetros para los nodos ocultos con
los datos actualizados.
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Aprendizaje de Parámetros con Variables
Ocultas

vi Repita 3–5 hasta que converjan, es decir, no se observen
cambios significativos en los parámetros.

vii El algoritmo EM optimiza los parámetros desconocidos y da
un máximo local, las estimaciones finales dependen de la
inicialización.
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Intervenciones sobre CBNs

Fórmula Truncada de Factorización:

f(v | do(x)) =


∏
{i|Xi∈V\X } f(xi | pa(xi)) si v es consistente con x,

0 en cualquier otro caso,
(1)

donde v consistente con x significa que v y x asignan los mismos
valores a las variables en V ∩ X .
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Distribución Post-Intervención

Ajuste por Covariantes

i Dada una estructura causal G.

ii G es usada para encontrar un subconjunto de variables,
llamado conjunto de ajuste.

iii Utilizando este conjunto se calcula la distribución
post-intervención.

P(y | do(x)) =

P(y | x), if Z = ∅∫
Z P(y | xz)P(z)dz, otherwise.
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Efecto Causal Total

El efecto causal total se define como ∂
∂x E(Y | do(x))

Utilizando la definición de conjunto de ajuste suponiendo una
distribución conjunta Gaussiana, se tiene que:

E(Y | do(x)) = α+ βx + γT E(Z).

Bajo este esquema el efecto causal de X sobre Y está dado
por β, i.e., el coeficiente de X en la regresión anterior.
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Multivariate Gaussian & Linear
Regression

For multivariate Gaussian densities, we can use the fact
that this kind of densities are fully defined by expectations.

For conditional independencies P(Y | x, z) = P(Y | z) we can
use conditional expectations E(Y | x, z) = E(Y | z).

Since conditional expectations are linear in a multivariate
Gaussian distribution, allows to use regression for estimate
E(Y | x, z) = α+ βx + γT z, for some α, β ∈ R and γ ∈ R|z |.
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Total Causal Effect

Definition
The total causal effect of X on Y for continuous random variables
setting is defined as ∂

∂x E(Y | do(x)) (see [Maathuis et al., 2009]).

Since by the adjustment set definition, we have that

E(Y | do(x)) =
∫

z
E(Y | x, z)f(z)dz = α+ βx + γT E(Z).

The total causal effect of X on Y in this setting is β, that is,
the coefficient of X in the regression of Y on X and the
adjustment set Z
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Redes Bayesianas
i (G,ϕ), Mapeo de Independencias Condicionales a partir

de datos observacionales (d-separación).

ii Distribuciones de Probabilidad Conjunta (CPDs)
ϕ = {P(xi | pa(xi))}.

iii

P(X1, . . . ,Xp) =

p∏
i=1

P(xi | pa(xi)).
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Algoritmos FCI y ZML
([Zhang, 2008b, Malinsky and Spirtes, 2017])

Partial Ancestral Graphs (PAGs).
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Parameterization of the canonical DAG
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Data generation process

Data Set

Figure 2: Linear Gaussian structural equations, coefficients distributed as
±U([0.5, 1.5]) and random perturbations distributed as N(0,U([1, 3]))).
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Evaluation Metric I
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Evaluation Metrics II
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Métrica de Evaluación AIntMSE
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Contribution

1. La contribución principal es un método para aproximar el
efecto causal en los casos en que otros trabajos se limitan a
responder que no es posible encontrar el efecto causal,
entre algunos pares de variables, en un sistema que no
asume suficiencia causal.
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Future Work

3. Explorar alternativas a Maximización de Esperanza (EM) en
el proceso de aprendizaje de los parámetros con variables
ocultas de los DAGs canonicos, ej. Descenso de Gradiente.

4. Extender el trabajo en [Montero-Hernandez et al., 2018] a
sistema insuficientes. En el cual se utilizan intervalos de
efectos causales para señalar un modelo único de la clase
de equivalencia de Markov.
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Context: Causal Inference
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Causal Relations

Direct Cause Mediator

Common 
Cause

Latent Common 
Cause
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