

Learning MDP-ProbLog Programs for Self-Driving Cars[†]

Alberto Reyes¹, Héctor Avilés², Marco Negrete³, Rubén Machucho²,
Karely Rivera², Gloria Isabel de-la-Garza-Terán²

¹National Institute of Electricity and Clean Energies, ²Polytechnic University of Victoria, Mexico, ³Faculty of Engineering, National Autonomous University of Mexico

[†]This work is supported by UNAM-DGAPA under grant TA101222 and Mexican Consortium of AI CIMAT-CONAHCYT

Outline

1. Motivation
2. Description of the self-driving system
3. Research proposal
4. Conclusions and future work

Introduction

- Self-driving cars promise some advantages for the future of human mobility (e.g., safety, economy, health, pollution)¹
- These machines must perceive and take critical driving decisions in complex environments with several objects around (e.g., pedestrians, other vehicles, various obstacles)
- The components of traditional hardware-software architectures can roughly be divided into perception, planning and control
- An important component is the **behavior selection module** that is responsible of the repeated selection of reactive or short-term driving actions (stop, go, pass, brake)

¹ Motivational Tesla video

Introduction

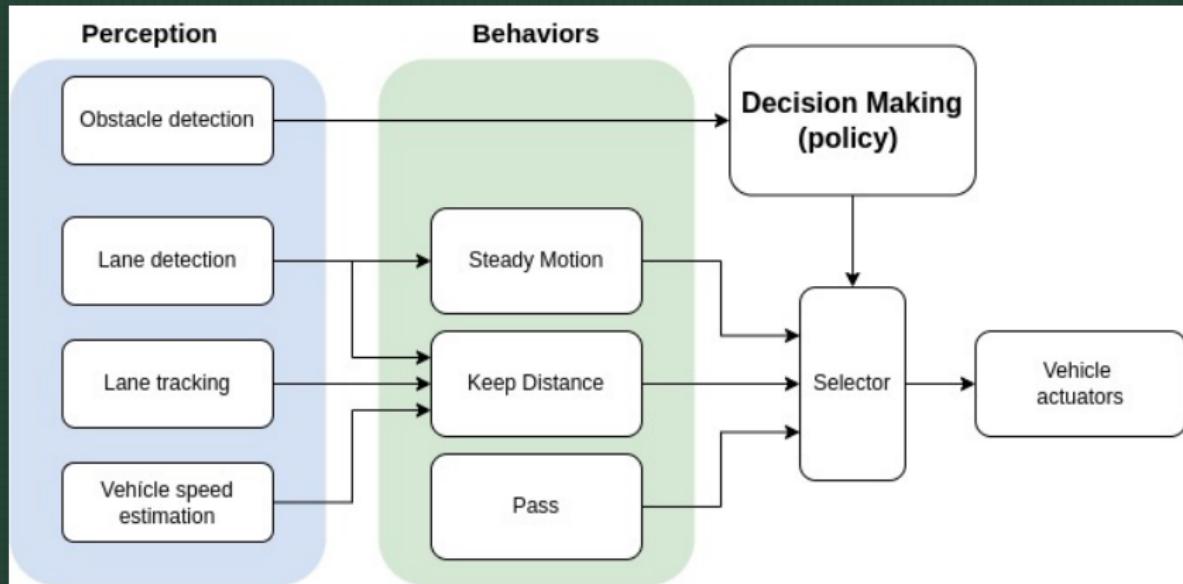
- Our work² is focused on the development of different capabilities for a simulated self-driving³ car that include:
 - ▶ Visual perception for lane detection, and obstacle detection and speed estimation using 3D-LiDAR
 - ▶ Lane tracking and the execution of driving behaviors via speed and steering control
 - ▶ Recurrent selection of one of four driving behaviours accordingly to the current environment: **stop, cruise, keep distance, overtake**

² Avilés, H., Negrete, M., Machucho, R., Rivera, K., Trejo, D., & Vargas, H. Probabilistic Logic Markov Decision Processes for Modeling Driving Behaviors in Self-driving Cars. In Ibero-American Conference on Artificial Intelligence (pp. 366-377). Springer.

³ Webots, "<http://www.cyberbotics.com>." Open-source Mobile Robot Simulation Software.

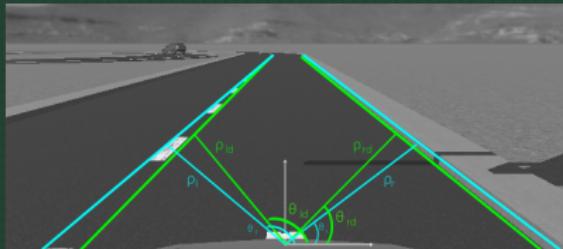
Example(s) of the driving system
Video(s)

General architecture

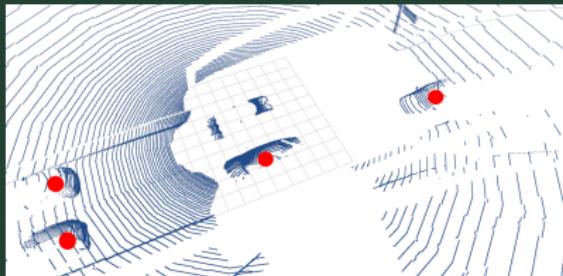


Self-driving system

Lane detection based on edge detection and Hough Transform



Obstacle detection based on Lidar sensor



Lane tracking and keep distance using proportional control

$$v = C_b \quad (1)$$

$$\delta = K_\rho e_\rho + K_\theta e_\theta \quad (2)$$

with

$$e_\rho = ((\rho_{ld} - \rho_l + \rho_{rd} - \rho_r)/2)$$

$$e_\theta = ((\theta_{ld} - \theta_l + \theta_{rd} - \theta_r)/2)$$

Pass behavior using Finite State Machines

Self-driving system

- The behavior selection module is based on an **action policy** obtained from probabilistic logic description of a factored Markov decision process designed by hand
- Causal discovery
 - ▶ Explainability <-> Accident causes identification.
 - ▶ RL -> Learned policies for causal discovery.

Factored MDPs

- FMDPs are composed by a 5-tuple $(X, \mathbf{X}, \mathcal{A}, p, R)$, in which:
 - i) $X = \{X_i\}_{i=1}^n$ is a set of n discrete state random variables,
 - ii) \mathbf{X} is a set of all possible n -tuples $\mathbf{x} = (x_i)_{i=1}^n$, such that x_i is a particular value of the random variable X_i , for all $i = 1, \dots, n$ (each tuple \mathbf{x} defines a state of the system)
 - iii) \mathcal{A} is a set of possible actions the decision maker can choose,
 - iv) $p(\mathbf{x}'|\mathbf{x}, a) \in [0, 1]$ is a discrete, joint probability transition function, where $\mathbf{x}, \mathbf{x}' \in \mathbf{X}$, and,
 - v) $R(\mathbf{x}, a)$ is the reward model.

Factored MDPs

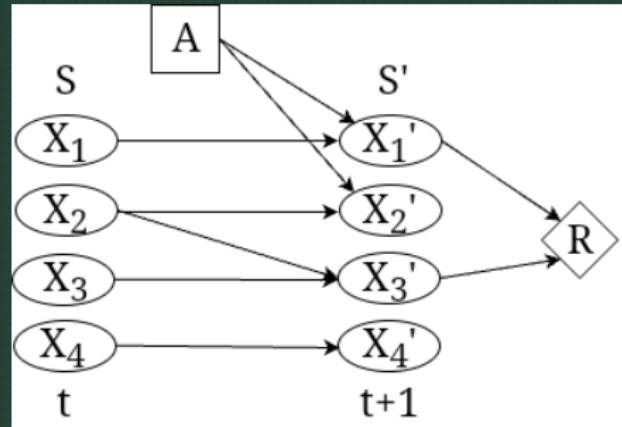


Figure: An example of a influence diagram representing a transition function.

MDP-Problog program

- An MDP-ProLog program⁴ is a tuple $PL = (X_F, \mathcal{A}, \mathcal{U}, \mathcal{T}_r, \mathcal{R}_r, \mathcal{C})$, such that:
 - 1) X_F is a finite set of n *state fluents*
 - 2) \mathcal{A} is a finite non-empty set of m actions
 - 3) \mathcal{U} is a finite set of utilities
 - 4) \mathcal{T}_r is a finite non-empty set of factored transition rules
 - 5) \mathcal{R}_r is a finite set of reward rules that compose the *reward model*
 - 6) \mathcal{C} is a finite set of complementary atoms (atoms that are neither state fluents nor actions)

⁴ T. P. Bueno, D. D. Mauá, L. N. De Barros, and F. G. Cozman, “Markov decision processes specified by probabilistic logic programming: representation and solution,” in 2016 5th Brazilian Conference on Intelligent Systems (BRACIS), pp. 337–342, IEEE, 2016.

States, reward function and actions

- The state of the system is described using four binary state fluents North, North-West, West, and South-West
- A positive reward is assigned whenever the self-driving car has free space in front of it, and different negative rewards for rear crashes and side swipe crashes are considered
- Actions are: change_lane, overtaking, keep_distance

States of the system

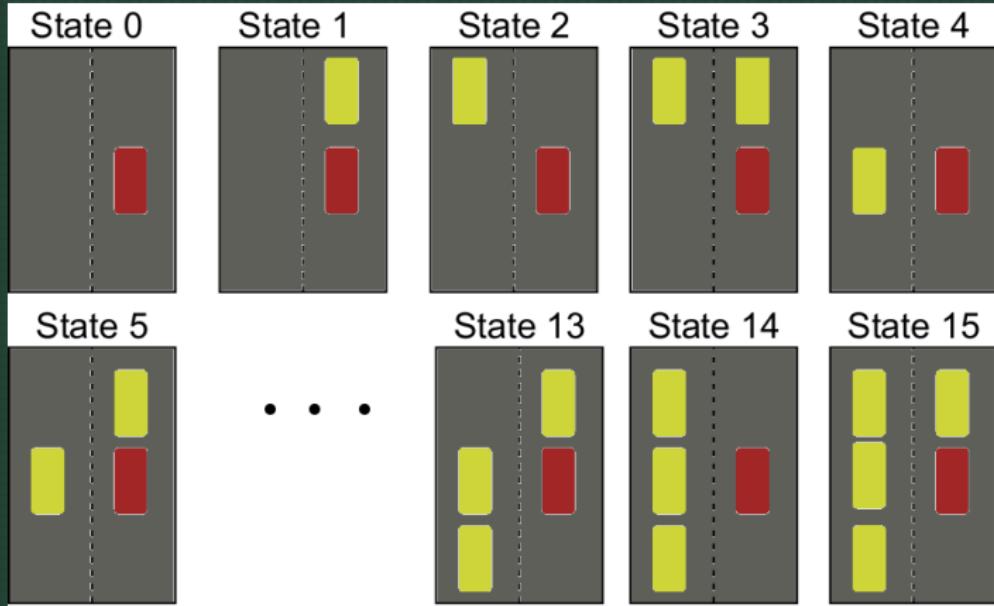


Figure: MDP States of the system. The red rectangle represents the self-driving car and the yellow rectangles are nearby (obstacle) vehicles.

Factored transition rules

- An example of factored transition rules for the future state fluent $free_N'$ given the current state and action *overtaking* is:

0.9 :: $free_N(1) :- free_NW(0), free_W(0), overtaking.$

0.05 :: $free_N(1) :-$

$(not(free_NW(0)); not(free_W(0))), overtaking.$

(each rule represents probability value $p(x'|x, a)$, where $x' \in X_F$, $x \in X$, and $a \in \mathcal{A}$)

Self-driving system

- The reward function is based on (independent) additive utilities assigned to actions and state fluents:

utility(free_N(1), 5).

utility(rear_crash(1), -30).

utility(side_crash(1), -10).

utility(keep_distance, -10).

utility(overtaking, -1).

$0.99 :: rear_crash(1) :- \neg free_N(1),$

steady_motion, not(keep_distance).

$0.95 :: rear_crash(1) :- \neg free_NW(1), overtaking.$

$0.95 :: side_crash(1) :- \neg free_W(1), overtaking.$

Dataset recording

- The following data are logged:
 - ▶ The value of the current state fluents
 - ▶ The action selected
 - ▶ Simulation time
 - ▶ Accelerometer data (for crash detection)
 - ▶ Success or failure of each maneuver
 - ▶ (x, y, θ) of the self-driving car (obtained from the simulator)
 - ▶ The relative distance to other vehicles
 - ▶ Speed and steering of the self-driving car (relative speed and steering of other cars is forthcoming)

Learning causal relationships

- To learn an MDP-PL, data are collected from random driving actions performed by the self-driving car on the environment.
- This data will be partitioned and sequentially registered in ordered tuples $d_t(\mathbf{x}, a, r)$ indexed in time $t \in \{1, \dots, T\}$, such that $T \in \mathbb{N}$, $\mathbf{x} \in \mathbf{X}$ is the current observed state, $a \in \mathcal{A}$ is the current performed action, and r is a numerical reward value assigned to \mathbf{x} and a .

Learning causal relationships (2)

- In the first learning stage, the K2 algorithm will be used to learn the transition function $p(\mathbf{x}'|\mathbf{x}, a)$.
- The reward function will be obtained by using J48 to generate a reward decision tree .
- In the second learning stage, the ID will be converted into an MDP-PL.
- The SPI software ⁵ allows to approximate different types of MDPs from data

⁵ Reyes A., Ibargüengoytia P.H., Santamaría G. (2019) SPI: A Software Tool for Planning Under Uncertainty Based on Learning Factored MDPs. In: Martínez-Villaseñor L., Batyrshin I., Marín-Hernández A. (eds) Advances in Soft Computing. MICAI 2019. Lecture Notes in Computer Science, vol 11835. Springer, Cham. <https://github.com/albreyes/factoredMDPs>

Conclusions and future work

- We presented a proposal to learn causal relationships between state variables that model a sequential decision process using MDPs for a self-driving car
- Our work aims to develop perceptual and control capabilities of a self-driving car
- A realistic robot simulator is used as a test bed of the self-driving car and to construct a database of driving examples
- The database includes information about time, relative speed of other cars, the current and future state variables, the reward received in each state, the success or failure of the action
- Future work: Extend the simulated car with other sensors such as motor encoders, and other capabilities such as human detection

Thank you!

Questions?

areyes@ineel.mx,
{havilesa, rmachuchoc, 1930435, 2130071}@upv.edu.mx,
marco.negrete@ingenieria.unam.edu