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In which direction will we promote progress?



The general argument

] “Yes, Causal Al should rule over Deep Learning.’
1. There are many reasons just mentioned in this presentation.
2. Causal Markov Condition can be understood as an advantage.
3. Cognitive arguments support this thesis.

J This is a general argument that addresses two global approaches to Al.

JScientific communities need to decide in which direction promote progress, and which methods
will the apply.




Two kinds of methods

CAUSAL Al DEEP LEARNING

= Al based on Causal Bayesian Networks (CBNs), and = Densely connected neural networks.

causal models.
= All methods described in Francois Chollet’s book

= Causal models, their assumptions, and the Deep Learning with Python (ConvNets, RNNs, etc.).
algorithms to infer them are here understood as _ _
Judea Pearl defines them in his book Causality " A DEEP LEARNING Al SYSTEM is expected to find
(2009). the function that best fits the data.

=A CAUSAL Al SYSTEM is expected to convey causal
explanations of its behavior, and to operate with
information about the relations between variables.
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For the sake of specificity:

SECOND EDITION

Francois Chollet




They do not exclude each other

= Recently, we have seen considerable progress towards fusing both approaches (Vg. Testing
Bayesian Networks (TBNs), (Choi, Wang, Darwiche, 2019, 1JAR)).

= Notwithstanding, a predominant one needs to be chosen.
1. Scientific goals

2. Complex Systems
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(a) A neural network structure (b} A mathematical model of a neuron

Figure 1: A neural network and a neuron.
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TBNs: An example of fusing both approaches

Choi, Wang, Darwiche: 2019
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(a) TBN (b) TAC for query P*(y) (c) BN after CPT selection

TBNs: An example of fusing both approaches

Choi, Wang, Darwiche: 2019




They do not exclude each other

= Recently, we have seen considerable progress towards fusing both approaches (Vg. Testing
Bayesian Networks (TBNs), (Choi, Wang, Darwiche, 2019, 1JAR)).

= Notwithstanding, a predominant one needs to be chosen.
1. Scientific goals

2. Complex Systems




Advantages of Causal methods

= Causal models grasp changes in the probability distribution, they deal with a family of ‘n’
probability distributions

= [nterpretability and simplicity
= Encode previous (expert) knowledge
= Measure causal effects

= Grasp invariant qualitative knowledge




Advantages of
Deep Learning

Universal approximators

Expert knowledge is not strictly
required

They have found no competitors
in the problems they solve
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The Causal Markov Condition could be an advantage

First argument



Causal Inference Assumptions
(IC-like algorithms)

1. Minimality

2. Stability

3. The Causal Markov Condition (CMC)




Causal Inference Assumptions
(IC-like algorithms)

1. Minimality
2. Stability

3. The Causal Markov Condition (CMC)

Problematic!




What do we get with The Causal Markov Condition?



A change in Statistics

CLASSICAL APPROACH THE NEW TECHNIQUES
1. Small set of strong features 1. Alarge number of weak features (vg.
data mining)

2. Simple functions (vg. linear)

2. ‘Smart’ functions




Vapnik (2000)

Current practices references:

Goodfellow, Bengio, Courville
(2016)

Lee, W. (2019)

Chollet, F. (2021)

Statistics for
Engineering and
Information Science

Viadimir N. Vapnik
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What we get with the CMC

CAUSAL Al DEEP LEARNING
- —=welbsetofoirongfeatires 1. Alarge number of weak features (vg.
. . . data mining)
 —=ieeneefupedone fud lnoor

2. ‘Smart’ functions
= The structure

) There is no feasible procedure to select a
few neural paths that will render the others
negligible.

) It is feasible to select a few causal paths
that will render the others insignificant.




What we get with the CMC

CAUSAL Al DEEP LEARNING

- Small set of strong features 1. Alarge number of weak features (vg.

: : : data mining)
 —=ieeneefupedone fud lnoor

2. ‘Smart’ functions
= The structure

) There is no feasible procedure to select a

few neural paths that will render the others
negligible.

1 It is feasible to select a few causal paths
that will render the others insignificant.

The Causal Markov Condition!




NANGY CARTWRIGHT

Nancy
Cartwright’s
Objections

Approaches in Philosephy and Economics
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Problems with Causal Markov
Condition

1. Common causes
2. Causes cooperating to produce one effect
Mixed populations

Changes in the same direction of time

o k& W

By-products




FIGURE:

What does it mean to hold a scientific attitude?

» Option 1: “When you don’t know, you don’t know.” (Non-observed variables agnosticism)
» Option 2: “Hold adequate assumptions.”




Control tasks

= The Causal Markov Condition enables us to model decision making situations.

= Marvin Minsky’s Society of Mind

Just wonder if it is possible to design an Al system with a causal model as its main structure, one
which operates not based on raw data inputs, but on results obtained by different neural networks

that process different kinds of data.
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On Cognitive grounds

Neuroscience and Artificial Intelligence mutually enrich themselves



Backpropagation and the brain

Timothy P. Lillicrap®, Adam Santoro, Luke Marris, Colin J. Akerman and
Geoffrey Hinton

Abstract | During learning, the brain modifies synapses to improve behaviour. In the
cortex, synapses are embedded within multilayered networks, making it difficult
to determine the effect of an individual synaptic modification on the behaviour of
the system. The backpropagation algorithm solves this problem in deep artificial
neural networks, but historically it has been viewed as biologically problematic.
Nonetheless, recent developments in neuroscience and the successes of artificial
neural networks have reinvigorated interest in whether backpropagation offers
insights for understanding learning in the cortex. The backpropagation algorithm
learns quickly by computing synaptic updates using feedback connections to
deliver error signals. Although feedback connections are ubiquitous in the cortex,
it is difficult to see how they could deliver the error signals required by strict
formulations of backpropagation. Here we build on past and recent developments
to argue that feedback connections may instead induce neural activities whose
differences can be used to locally approximate these signals and hence drive
effective learning in deep networks in the brain.

predominantly unsupervised fashion"*’,
building representations that make explicit
the structure that is only implicit in the raw
sensory input. It is natural to wonder, then,
whether backprop has anything to tell us
about learning in the brain™* .

Here we argue that in spite of these
apparent differences, the brain has the capacity
to implement the core principles underlying
backprop. The main idea is that the brain
could compute effective synaptic updates by
using feedback connections to induce neuron
activities whose locally computed differences
encode backpropagation-like error signals.
We link together a seemingly disparate set
of learning algorithms into this framework,
which we call ‘neural gradient representation
by activity differences’ (NGRAD )"+,

The NGRAD framework demonstrates that
it is possible to embrace the core principles
of backpropagation while sidestepping
many of its problematic implementation
requirements. These considerations may be
relevant to any brain circuit that incorporates
both feedforward and feedback connectivity.
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predominantly unsupervised fashion"*,
building representations that make explicit
the structure that is only implicit in the raw
sensory input. It is natural to wonder, then,
whether backprop has anything to tell us
about learning in the brain™*.

Here we argue that in spite of these
apparent differences, the brain has the capacity
to implement the core principles underlying
backprop. The main idea is that the brain
could compute effective synaptic updates by
using feedback connections to induce neuron
activities whose locally computed differences
encode backpropagation-like error signals.
We link together a seemingly disparate set
of learning algorithms into this framework,
which we call ‘neural gradient representation
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The NGRAD framework demonstrates that
it is possible to embrace the core principles
of backpropagation while sidestepping
many of its problematic implementation
requirements. These considerations may be
relevant to any brain circuit that incorporates
both feedforward and feedback connectivity.

[s the brain implementing backpropagation?

THE NGRAD HYPOTHESIS
Hinton et al. (2020)




The NGRAD Hypothesis
Backprop-like algorithms

It remains physiologically implausible

a I/‘\
= Do we compute the derivatives and perform J
a backwardpass without altering the state of
our neurons? rJ olie
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The Forward-Forward Algorithm: Some Preliminary
Investigations

Geoffrey Hinton
Google Brain
geoffhinton@google.com

Abstract

The aim of this paper is to introduce a new learning procedure for neural networks
and to demonstrate that it works well enough on a few small problems to be worth
further investigation. The Forward-Forward algorithm replaces the forward and
backward passes of backpropagation by two forward passes, one with positive
(i.e. real) data and the other with negative data which could be generated by the
network itself. Each layer has its own objective function which is simply to have
high goodness for positive data and low goodness for negative data. The sum of
the squared activities in a layer can be used as the goodness but there are many

[s the brain implementing FF-algorithm?

Hinton, 2022




Neural networks are not neural enough

= These algorithms can not answer why-questions
Option 1: Causality is an associative illusion

Option 2: Neural algorithms are not enough to model the human cognitive system




Neural networks are not neural enough

= These algorithms can not answer why-questions

Option 2: Neural algorithms are not enough to model the human cognitive system

= Despite the label ‘neural’, it is healthy to question if real neurons, and overall the human
cognitive system operate within a neural network framework.




Mesolimbic dopamine release
conveys causal associations

How tolearn = Huijeong Jeong et al. (2022)

(:Q:} . %
= Two Hypotheses:

Model 1: current model Model 2: proposed model

Ly — & LV
i : What caused . .
redet el e Sememter  thmeanglu = ANCCOR: Adjusted Net Contingency for Causal
outcome .
Relations

Mesolimic dopamine (DA)

Event —L » Cause of this event . ..
= Dopamine release activity stands for

Value was higher ~ __
than predicted DA n should be learned
Disrupt prediction error = DADA iTle\bitiU” - Block causal learning ret rOSpeCtIVe reasonin g.
1 = Counterfactuals are an intrinsic feature of
e experimental tests s ..
x between models v human cognition.




Concluding remarks

Should Causal Al Rule over Deep Learning?



Originally both methods were
designed for different purposes

NEURAL NETWORKS CAUSAL MODELS

J The pattern recognition problem J The problem of precisely determining
relations between variables and the
consequences of those relations

Since both methods obey distinct goals, we can not just combine them.
While recognizing that both are extremely useful, it is needed to chose a
main goal in order to put them to collaborate.




Yes, Causal Al Should Rule over Deep Learning

1. The Markov Condition is not a reason to reject causal models
v' It provides a better comprehension.
v' ltis adequate for macroscopic phenomena.
v" Models which assume CMC are better at decision making and control tasks

2. On cognitive grounds:
v" Our cognitive system does not obey a machine learning neural algorithm

v' There is evidence supporting that counterfactual reasoning is anchored in low-level synaptic
information transmission.




Causal knowledge

is deeper than

Deep Learning

Thank you!

- CaDis 2023
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3. COUNTERFACTUALS

Imagining, Retrospection, Understanding

What if 1 had 2 Wiy?
(Was it X that caused Y? What if X had not
occurred? What if 1 had acted differently?)

Was it the aspirin that stopped my headache?
Would Kennedy be alive if Oswald had not
/hat if 1 had not smoked for the

ACTIVITY:
QUESTIONS:

EXAMPLES:

2. INTERVENTION

Doing, Intervening

What if do ...? How?
(What would Y be if 1do X?
How can T make Y happen?)

If 1 take aspirin, will my headache be cured?
What if we ban cigarettes? J

L

ACTIVITY:

QUESTIONS:

VAL

EXAMPLES:

L

(1. ASSOCIATION

Seeing, Observing

What if 1 see .7
(How are the
How would secing X change my belief in Y?)

ables related?

What does a symptom tell me about a disease?

What does a survey tell us abour the

election results?
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